Skip to main content Contents
Prev Up Next \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 5.3 Introduction to Logarithms (EL3)
Objectives
Subsection 5.3.1 Activities
In
Section 2.6 , we introduced the idea of an inverse function. The fundamental idea is that
\(f\) has an inverse function if and only if there exists another function
\(g\) such that
\(f\) and
\(g\) “undo” one another’s respective processes. In other words, the process of the function
\(f\) is reversible, and reversing
\(f\) generates a related function
\(g\text{.}\)
Activity 5.3.1 .
Let
\(P(t)\) be the function given by
\(P(t)=10^t\text{.}\)
(a)
Fill in the table of values for
\(P(t)\text{.}\)
\(-3\)
\(-2\)
\(-1\)
\(0\)
\(1\)
\(2\)
\(3\)
Answer .
\(-3\)
\(0.001=10^{-3}\)
\(-2\)
\(0.01=10^{-2}\)
\(-1\)
\(0.1=10^{-1}\)
\(0\)
\(1=10^{0}\)
\(1\)
\(10=10^{1}\)
\(2\)
\(100=10^{2}\)
\(3\)
\(1000=10^{3}\)
(b)
Do you think
\(P\) will have an inverse function? Why or why not?
Answer . Students may say, each input has a distinct output, the function is one-to-one.
(c)
Since
\(P\) has an inverse function, we know there exists some other function, say
\(L\text{,}\) such that
\(y=P(t)\) represent the same relationship between
\(t\) and
\(y\) as
\(t=L(y)\text{.}\) In words, this means that
\(L\) reverses the process of raising to the power of 10, telling us the
power to which we need to raise 10 to produce a desired result. Fill in the table of values for
\(L(y)\text{.}\)
\(10^{-3}\)
\(10^{-2}\)
\(10^{-1}\)
\(10^{0}\)
\(10^{1}\)
\(10^{2}\)
\(10^{3}\)
Answer .
\(10^{-3}\)
\(-3\)
\(10^{-2}\)
\(-2\)
\(10^{-1}\)
\(-1\)
\(10^{0}\)
\(0\)
\(10^{1}\)
\(1\)
\(10^{2}\)
\(2\)
\(10^{3}\)
\(3\)
(d)
What are the domain and range of
\(P\text{?}\)
Answer . Domain \((-\infty, \infty)\) Range \((0,\infty)\)
(e)
What are the domain and range of
\(L\text{?}\)
Answer . Domain \((0,\infty)\) Range \((-\infty, \infty)\)
Definition 5.3.3 .
The
base \(b\) logarithm of a number is the exponent we must raise
\(b\) to get that number. We represent this function as
\(y=\log_b(x)\text{.}\)
We read the logarithmic expression as "The logarithm with base
\(b\) of
\(x\) is equal to
\(y\text{,}\) " or "log base
\(b\) of
\(x\) is
\(y\text{.}\) "
Activity 5.3.5 .
Write the following logarithmic equations in exponential form.
(a)
\(\log_{7} (\sqrt{7})=\dfrac{1}{2}\)
\(\displaystyle 7^{\frac{1}{2}}=\sqrt{7}\)
\(\displaystyle 7^{\sqrt{7}}=\dfrac{1}{2}\)
\(\displaystyle \sqrt{7}^{\frac{1}{2}}=7\)
\(\displaystyle \dfrac{1}{2}^{7}=\sqrt{7}\)
(b)
\(\displaystyle 3^{m}=r\)
\(\displaystyle r^{3}=m\)
\(\displaystyle 3^{r}=m\)
\(\displaystyle m^{r}=3\)
(c)
\(\displaystyle 2^{x}=6\)
\(\displaystyle 6^{2}=x\)
\(\displaystyle x^{x}=6\)
\(\displaystyle 2^{6}=x\)
Activity 5.3.6 .
Write the following exponential equations in logarithmic form.
(a)
\(\displaystyle \log_{5} (2)=25\)
\(\displaystyle \log_{5} (25)=2\)
\(\displaystyle \log_{25} (5)=2\)
\(\displaystyle \log_{2} (25)=5\)
(b)
\(\displaystyle \log_{3} (-1)=\dfrac{1}{3}\)
\(\displaystyle \log_{\frac{1}{3}} (-1)=3\)
\(\displaystyle \log_{3} \left(\dfrac{1}{3}\right)=-1\)
\(\displaystyle \log_{-1} \left(\dfrac{1}{3}\right)=3\)
(c)
\(\displaystyle \log_{10} (n)=a\)
\(\displaystyle \log_{10} (a)=n\)
\(\displaystyle \log_{n} (10)=a\)
\(\displaystyle \log_{a} (n)=10\)
Activity 5.3.7 .
We can use the idea of converting a logarithm to an exponential to evaluate logarithms.
(a)
Consider the logarithm
\(\log_{3}(9)\text{.}\) If we want to evaluate this, which question should you try and solve?
To what exponent must \(9\) be raised in order to get \(3\text{?}\)
What exponent must be raised to the third in order to get \(9\text{?}\)
To what exponent must \(3\) be raised in order to get \(9\text{?}\)
What exponent must be raised to the ninth in order to get \(3\text{?}\)
(b)
Evaluate the logarithm,
\(\log_{3}(9)\text{,}\) by answering the question from part (a).
Activity 5.3.8 .
Evaluate the following logarithms.
(a)
\(\displaystyle 4\)
\(\displaystyle \dfrac{1}{4}\)
\(\displaystyle -3\)
\(\displaystyle 3\)
(b)
\(\displaystyle \dfrac{1}{2}\)
\(\displaystyle -2\)
\(\displaystyle 2\)
\(\displaystyle -\dfrac{1}{2}\)
(c)
\(\log_{10}\left(\dfrac{1}{1000}\right)\)
\(\displaystyle \dfrac{1}{3}\)
\(\displaystyle -3\)
\(\displaystyle 3\)
\(\displaystyle -\dfrac{1}{3}\)
(d)
\(\log_{e}\left(e^{3}\right)\)
\(\displaystyle 3\)
\(\displaystyle e^{3}\)
\(\displaystyle -3\)
\(\displaystyle \dfrac{1}{3}\)
(e)
\(\displaystyle 7\)
\(\displaystyle \dfrac{1}{7}\)
\(\displaystyle 0\)
\(\displaystyle 1\)
Activity 5.3.11 .
Evaluate the following logarithms. Some may be done by inspection and others may require a calculator.
(a)
\(\log_4 \left( \dfrac{1}{64}\right)\)
(b)
(c)
\(\ln \left( 12 \right)\)
(d)
\(\log \left( 100\right)\)
(e)
\(\log_5 \left( 32 \right)\)
(f)
\(\log_5 \left( \sqrt{5}\right)\)
(g)
\(\log \left( -10 \right)\)
Activity 5.3.13 .
Find the domain of the function
\(\log_3(2x-4)\text{.}\)
(a)
Set up an inequality that you must solve to find the domain.
(b)
Solve the inequality to find the domain. Write your answer in interval notation.
Answer .
\(x \gt 2\) or \((2, \infty)\)
Exercises 5.3.2 Exercises